

 1

Integration of the Reconfigurable Self-Healing eDNA
Architecture in an Embedded System

Michael Reibel Boesen1, Didier Keymeulen2, Jan Madsen1, Thomas Lu2, Tien-Hsin Chao2

1 Technical University of Denmark

Richard Petersens Plads, Bygning 322
Kgs. Lyngby, Denmark 2800

+45 31596369
{mrb,jan@imm.dtu.dk}

2 Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

818-354-4280
{didier.keymeulen,thomas.t.lu,tien-hsin.chao@jpl.nasa.gov}

Abstract—In this work we describe the first real world case
study for the self-healing eDNA (electronic DNA)
architecture by implementing the control and data
processing of a Fourier Transform Spectrometer (FTS) on
an eDNA prototype. For this purpose the eDNA prototype
has been ported from a Xilinx Virtex 5 FPGA to an
embedded system consisting of a PowerPC and a Xilinx
Virtex 5 FPGA. The FTS instrument features a novel liquid
crystal waveguide, which consequently eliminates all
moving parts from the instrument. The addition of the
eDNA architecture to do the control and data processing
has resulted in a highly fault-tolerant FTS instrument. The
case study has shown that the early stage prototype of the
autonomous self-healing eDNA architecture is expensive in
terms of execution time.

TABLE OF CONTENTS12

1. INTRODUCTION ... 1
2. EDNA: FUNDAMENTAL CONCEPTS 2
3. EDNA ARCHITECTURE .. 2
4. FOURIER TRANSFORM SPECTROMETER (FTS)
APPLICATION.. 4
5. INTEGRATION OF FTS APPLICATION IN EDNA 5
6. EDNA PERFORMANCE ANALYSIS 7
7. CONCLUSION .. 10
REFERENCES .. 10
BIOGRAPHY .. 11

1. INTRODUCTION
In the age of ubiquitous computing, all parts of the industry
is in need of highly robust hardware platforms. Embedded
systems are given increasingly often life-saving, life-
depending roles, such as autonomous subway systems,
airplanes, cars, hospital equipment etc. An unprotected

1 978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC paper#1453, Version 4, Updated 2010:10:26

hardware fault in any of these will have dire consequences,
consequently hardware faults in such systems are always
protected by huge amounts of redundancy. But even the
state-of-the-art hardware fault prevention technique –
Triple Modular Redundancy (TMR) has its limits. A fault
in the voter circuits or a permanent fault in one of the
copies will eliminate the TMR’s ability to identify the
correct value, while a repair of the faulty module will allow
it to reconstruct the TMR. The capability of a hardware
platform to repair itself becomes particularly useful in
space, where a repair mission will be either a great risk,
impossible or very expensive, or all of the above.
In the last decade, several biologically inspired
reconfigurable self-healing hardware platforms have been
proposed [3,4,5,6]. All of these suffer from problematic
scaling issues due in particular to a too low level of logical
granularity. Consequently, (to the best of our knowledge)
neither of these has ever been applied to a real world
application.
Other approaches, such as roving STARS [7] uses a
centralized approach, where a centralized processing unit is
responsible for performing the fault tolerance mechanism.
Clearly, approaches using a centralized unit have single-
point-of-failure properties, which in a high reliability
environment would be unacceptable.
The eDNA (electronic DNA) architecture [1,2] is designed
for an ASIC implementation and will consequently be an
entirely new type of fault-tolerant coarse grained FPGA due
to the increased level of logical granularity, when compared
to other approaches. The increased level of logical
granularity makes the cost of the self-healing feature
acceptable [2].

The case study application studied is a Fourier Transform
Spectrometer (FTS) application. The prototype of the
instrument is produced by NASA’s Jet Propulsion
Laboratory and Vescent Photonics Inc. [10,11]. The
instrument itself takes a novel approach to mechanical

 2

robustness due to its novel liquid crystal waveguide, which
eliminates the need for moving parts in the instrument. The
moving parts in an FTS are considered the highest risk in
sending an FTS instrument to space, due the extreme g-
forces applied during launch. This makes this case study
particularly interesting because the result of applying the
eDNA architecture to such a system would be an FTS
instrument which is not only robust to mechanical faults
but also to permanent and transient hardware faults.

The next section outlines the basic structure and concept of
the eDNA concept. After this, section 3 goes deeper into
the concept and the architecture of the eDNA prototype.
Section 4 describes in detail the FTS application. Section 5
describes the integration of the FTS application on the
eDNA architecture as well as the integration of the eDNA
architecture on the embedded system. Section 6 presents the
performance analysis of the eDNA architecture resulting
from running the application. Finally, section 7 presents
our conclusion.

2. EDNA: FUNDAMENTAL CONCEPTS
eDNA system is the name of the entire package described
in this paper – consequently, we have two fundamental
terms; the eDNA architecture and the eDNA program.
Figure 1 shows an overview of the entire eDNA package.

The eDNA architecture consists of a distributed array of
multiple homogenous processing units called electronic
cells (eCells). The term homogenous expresses the fact that
all eCells contains the same hardware. The job of all eCells
combined, is to implement the eDNA program, which is
specified by the programmer. The eDNA program is
translated into a binary version of the program, which is
then fed to all eCells which all store it in a RAM block.
Each eCell implements a part of the eDNA program. The
specific part, which an eCell implements is, called the gene
of this particular eCell.

Each eCell contain a microprocessor and a 32 bit ALU
which is configured by the microprocessor to perform a
certain function described by the gene. The program run by
the microprocessor is termed the ribosomal DNA (referring
to the intracellular organelle in biological cells, responsible
for synthesizing proteins and consequently functionality of
the cells). The ribosomal DNA is a program written for the
eCell microprocessor, which performs self-organizing and
self-healing of the eDNA architecture. All eCells contain a
copy of this program.

Observe that no centralized processing unit is present. The
eCells cooperate to complete the self-organization and self-
healing completely automous and without “outside” help.

The eCells communicate with each other through a
Network-on-Chip (NoC) 2D-mesh-8 architecture, where

each eCell communicates directly with at most 8 adjacent
neighbors depending on position. The position of an eCell
in the NoC is represented by an (X,Y)-coordinate set. The
NoC completes package transfers between eCells using a
fault-tolerant data-transfer protocol, which can route
around dead links.Figure 1 shows an overview of the eDNA
package.

Figure 1 Overview of the eDNA architecture

3. EDNA ARCHITECTURE
The electronic DNA (eDNA) hardware architecture
presents a solution to this problem. Inspired by biology, the
eDNA architecture consists of an array of homogenous
small CPUs known as electronic cells (eCells) [1,13]. In
our prototype implementation [2] each eCell consists of a
Xilinx PicoBlaze (PB) [8,9], which is an 8-bit VHDL
synthesizable soft-core provided by Xilinx (see Figure 2).
The PicoBlaze is only responsible for executing the self-
organizing and self-healing algorithms (to be described
later), which are located in the local RAM of the PicoBlaze.
At runtime when no faults occur a 32-bit ALU is used for
dataprocessing, where it performs an operation on the two
32-bit operands A and B. A detailed block diagram of an
eCell can be seen in Figure 2.

 3

Figure 2 eCell Block Diagram

The eCells communicate with each other via a 2D-mesh
type Network-on-Chip (NoC) infrastructure. This allows
the eCells to establish dynamical paths with each other.
The package transfer in the network is implemented with a
fault-tolerant handshaking protocol, which is capable of
routing around dead links. An overview of the different
parts of the eDNA architecture can be seen in Figure 3.

Figure 3 Schematic of 3x3 eDNA architecture

Self-organization: Programming eDNA

The eDNA architecture is programmed by a program (the
eDNA program) written in the eDNA programming
language. The eDNA programming language [1,2] is a
basic programming language with the usual if-then-else
and loop control structures, but also includes an explicit
way for the programmer to indicate which program parts
should be run in parallel.

During initialization each eCell receives a binary encoded
version of the eDNA program and stores it in its local RAM
block (the block RAM denoted eDNA RAM in Figure 2). In
this way each eCell contains its copy of the eDNA program,
this gives the eCells the powerful feature of self-awareness
– i.e. each eCell know exactly what piece it plays in the

complete applicational puzzle as well as what roles other
eCells play. The binary encoded version of the eDNA
program divides the eDNA program written in the eDNA
language into tasks known as genes. Each eCell
implements one gene (one task), where one gene is defined
as one arithmetic operation of the eDNA program. An
example of an eDNA program is seen in Figure 4.

Figure 4 Example eDNA program

This eDNA program would require 4 eCells: One to
implement if (A == B) then, one to implement A
= B + C, one to implement B = B – C, and one to
implement C = B + 2.

Self-organization: Gene Mapping and Placement

When all eCells have received the complete eDNA program
the self-organizing begins. The self-organizing is where
each eCell locates its gene and configures the 32-bit ALU
accordingly, by moving the particular genes to a block
RAM shown in Figure 2 as the Gene RAM. Each eCell
locates its gene by using its unique identifier, which
identifies its position in the array. This identifier is simply
an integer from 0 to N-1 (where N is the number of eCells)
(seen in Figure 3 as the integer in the corner of each eCell).
The identifier is distributed together with the eDNA. This
identifier is consequently responsible for mapping the
functionality of the eDNA program onto the different
eCells. The self-organizing algorithm running on the
PicoBlaze of an eCell is implemented by counting the
number of genes and comparing it to the identifier this
particular eCell has.

Prior to this our eDNA software toolkit has analyzed the
mapping of the application using a metaheuristic
algorithm. The metaheuristic algorithm will return a
potentially optimal solution to the mapping problem in the
form of a mapping of genes to eCells, i.e., the sorted list of
identifiers of eCells. The eCells then implement this
mapping when self-organizing.

Self-healing

Self-healing is done by moving the gene of a faulty eCell to
a spare eCell, i.e., an eCell which hasn’t been assigned a
gene yet. Note that no physical “gene moving” takes place
as the spare eCell already have the complete eDNA. Only
the mapping of that particular gene switches from the faulty
eCell to the spare eCell.

 4

A crucial part of the self-healing process is the fault-
detection. However, in the current state of the prototype we
haven’t implemented the fault-detection algorithm yet, so
in this study we rely on manual fault-injection. When a
fault is injected the self-healing algorithm run by the
PicoBlaze of an eCell, completes the following steps:

1. Restore the gene of the faulty eCell at a spare eCell

2. Restore the gene state at the spare eCell

Step 1 is the restoration of the functionality of the faulty
eCell at a spare eCell. It is completed by simply remapping
the unique identifier of the faulty eCell to a spare eCell and
then broadcasting a message to all eCells requesting them
to run the self-organizing algorithm again. This will cause
the non-faulty eCells to speak with the spare eCell instead
of the faulty eCell and will cause the spare eCell to realize
that it is now an active eCell and participating in the
running the application.

Step 2: The gene state is basically the two registers holding
the operands of the eCells functionality, e.g., B and C of the
A = B + C eCell in the example program from Figure 4.
Recovering the gene state is inherent to our fault detection
algorithm and since it is not implemented in the prototype
yet, it is not the scope of the paper. In the present prototype
we can only recover registers B and C if they are constants.
Otherwise, we might “be lucky” that the application will
reinitialize the non-constant with the right value before the
eCell is executed again.

Figure 5 Self-healing example where 3 eCells are faulty
and moved to a different spot

Figure 5 shows an example of the self-healing. The black
eCells are eCells which have been assigned a function. The
grey eCells are spare-eCells. The numbers in each of the
eCells indicates their unique identifier, which refers to the
gene they are implementing. In this case eCell with
identifier 5 is faulty. Since all eCells contain the eDNA, all
that is needed to move the functionality to a spare-eCell is
to change the mapping of identifier 5 to a spare eCell. The
eCells will then autonomously reconfigure themselves to

communicate with the spare instead of the original and the
application can continue execution unabated. Observe that
due to the moving of functionality the communication paths
between eCells might be longer. Consequently, the only
side-effect of the self-healing is possibly slightly longer
communication time.

The final version of the eDNA architecture is aimed
towards an ASIC implementation to provide a customized
high speed eCell processor design. The prototype used in
this study is solely used to study the potential performance
of the final solution as well as learn about improvements
necessary to be implemented in the final ASIC solution.

Further information about the eDNA architecture can be
found in [1,2,14].

4. FOURIER TRANSFORM SPECTROMETER (FTS)
APPLICATION

Contrary to other spectrometers an FTS can analyze a gas
using a broadband light source in one scan. This has the
benefit that the instrument doesn’t necessarily have to carry
a light source, but could use the sun as light source. This of
course will save power, instrument area and weight. But
even if a special light source were required it would still
save power, because the light source doesn’t have to be
tuned to emit different wavelengths. Also the light source
would need to be on for a shorter period of time due to the
parallelism inherent in the FTS.

The standard way of building an FTS is to use a Michelson
interferometer to create the interferogram. However, a
Michelson interferometer is using movable mirrors to vary
the optical path difference. Consequently, using an FTS in
space applications based on a Michelson interferometer
design is considered a risk. The reason is that the immense
g-forces applied during launch might misalign the mirrors,
which might cause a complete loss of function or
uncertainties in the precision of the returned interferogram.

With that motivation, NASA’s Jet Propulsion Laboratory
and Vescent Photonics Inc., built an FTS where the
Michelson interferometer is replaced by a highly tunable
Liquid Crystal Waveguide (LCW) [10,11]. The schematic
of this FTS instrument is depicted in Figure 6.

It works like this: (1) incoming light is polarized at a 45
degree angle, causing it to split into TE and TM modes
(Figure 6 left), (2) the light then enters the LCW, where a
voltage is applied to an electrode, known as the OPD
electrode on the LCW. Changing this voltage causes one of
the modes to travel a farther distance than the other (Figure
6 mid), (3) the light exits the LCW and hits a beam
combiner (Figure 6 right). Because one of the modes now is
slightly out of phase with the other mode, the light received

 5

at the detector is at a lower intensity than the light, which
entered the LCW. This is exactly the same effect as the
Michelson interferometer achieves, but with no moving
parts! (4) By applying an FFT to the signal read from the
detector the spectrum will be produced.

Figure 6 FTS instrument developed by NASA’s Jet
Propulsion Laboratory and Vescent Photonics Inc.

FTS Data Operations

A LabVIEW program is used to control the FTS and do the
data processing of the detector readings.

The computational steps the program completes are:

1. Compute voltage for the OPD electrode.

2. Apply the voltage and read and process the voltage
reading from the detector.

3. Process the voltage reading and do an FFT on it.

We will implement step 1 and 2 on eDNA.

5. INTEGRATION OF FTS APPLICATION IN EDNA
The first step to integrate the FTS application on eDNA is
to move eDNA from its current Virtex 5 FX-130T FPGA to
an embedded system known as a CompactRIO platform
[12] from National Instruments. The CompactRIO platform
consists of a PowerPC at 800 MHz, a Xilinx Virtex 5 LX-
110 FPGA, an analog input module and an analog output
module. The basic architecture of a CompactRIO platform
is seen in Figure 7. A host PC programs the PowerPC and
FPGA using LabVIEW. The FPGA can be used to run
dedicated applications particular suited for FPGA

implementation as well as be used to interact directly with
the I/O modules. The I/O modules can be customized
depending on the application. In our case the I/O modules
are analog I/O modules to supply the electrode voltage and
read the recorded voltage signal from the detector.

Figure 7 CompactRIO architecture

The eDNA architecture will be integrated on the Virtex 5
FPGA of the CompactRIO system. The eDNA architecture
exists as VHDL code, which can be integrated into
LabVIEW by using IP integration tool known as
Component Level IP Node (CLIP node) [13], which is used
to interpret the top-level VHDL file of a design.

eDNA architecture LabVIEW interface

When using CLIP the top-level ports of the VHDL code
becomes a LabVIEW port object, which you can read/write
from/to just as you would use an I/O module. But the eDNA
architecture has a special handshaking protocol that needs
to be observed in order to communicate with it. Figure 8
shows a schematic of the eDNA architecture, its
environment and the handshaking protocol.

eDNA needs to be told when data is ready to be read and
also when the environment is ready to receive data. When
data is ready to be input to eDNA, the environment asserts
the data_in_rdy signal and provide the data. When the
environment is ready to receive data, it asserts the
rdy_for_data signal and checks whether eDNA output a
package identifier (idnt) which is not equal to 0, (since no
idnt are allowed to be zero). Whenever the environment
detects that the idnt is not zero, it waits 8 more clock cycles
and the data is ready. This is because the NoC of eDNA has
a link width of 1 bit in order to save NoC area, so data has
to be read out in serial. Observe, that just because the
environment assert the rdy_for_data signal doesn’t mean
that eDNA will provide data.

This handshaking is put into a separate sub-VI for ease of
use. Whenever one want to send data to eDNA the
inclusion of this sub-VI will take care of the handshaking.
Observe that execution will not be allowed to continue until
the sub-VI is done, which is when eDNA has produced an
output package based on the data.

 6

Figure 8 eDNA environment handshaking

eDNA cannot access the I/O modules directly, it has to use
the LabVIEW FPGA to read/write the analog I/O. In case
of a read, LabVIEW will simply send the data to eDNA
using the above mentioned sub-VI. This is not 100%
efficient since each time data will need to be sent to eDNA,
a load package needs to be created and sent. In [2] we
discovered that one package transfer from one eCell to
another takes 20 clock cycles, so we’re expecting a
considerable performance penalty because of this.

In case of a write, LabVIEW will simply read the data from
eDNA and then send it to the analog output.

Now it is also possible to download an eDNA program to
eDNA by simply reading a file containing the eDNA genes
and then send gene-by-gene the program to eDNA via the
handshaking sub-VI.

FTS application in the eDNA architecture

The FTS application for eDNA consists of two parts:

1. Voltage ramp generation

2. Averaging of the voltage reading from the detector

The program code for these parts was provided as
LabVIEW code from Vescent Photonics. In order to
implement this in eDNA we had to rewrite the LabVIEW
code using the eDNA programming language.

eDNA: Voltage ramp generation

The ramp is a simple linear voltage ramp going from 0 to
10 volts with a step size of 0.0025V, i.e., 4000 data points
in total. The ADC of our analog output module take a 16-
bit signed value and convert it to a voltage from 0-10V.
Consequently, if the data were to be stored in a memory, it

would only occupy 8KB of memory. However, in the
current state of the eDNA architecture prototype we don’t
have that much memory, so eDNA will have to calculate
the next ramp-step each time a new voltage ramp value is
needed.

The eDNA ramp program can be seen in Figure 9.

Figure 9 eDNA voltage ramp program

We had to make a small adaptation due to the early nature
of the prototype, which is that currently eDNA can only
compare to 0. This is why we use i = 3999 – k. This
program uses 5 eCells.

When the program is run 4000 times, all ramp values will
have been generated and the ramping is done.

eDNA: Averaging

The original program by Vescent Photonics, samples
160,000 points, which is downsampled to 4,000 points, i.e
each point is averaged 40 times. However, to ease the
hardware implementation we chose to implement the
division as a right-shift, therefore the closest we can do is
average each point 32 times. The eDNA program for the
averaging can be seen in Figure 10. Another adaptation had
to be made due to the state of the eDNA prototype, which is
that if-then-else only support statements in both the true
and false case, therefore we had to implement a dummy
case for the true part. This implementation also uses 5
eCells.

Figure 10 eDNA averaging program

This program is run 32 times for each averaging. Each
iteration eDNA is supplied a new i value and a new
detector value from the analog input module. Furthermore,
the sum is also reset before each start of the 32 iterations.
This is done by LabVIEW sending a load package to eDNA
with the sum reset to 0.

 7

The two programs seem very similar, but in practice they
are not. The eDNA ramp program is solely a source type of
program – where the environment doesn’t provide any
input to it apart from activating it. However, the eDNA
averaging program is acting as a sink and a source, since
the environment will have to stream the detector reading to
the eDNA architecture. This demonstrates that eDNA
supports two different ways of interacting with its
environment.

Finalizing the eDNA programs for deployment

Finally, the programs are transfered to our eDNA Software
Toolkit which compiles the programs into a gene-package
of the form seen in Figure 11 (note the x’s denote that the
value is hexadecimal). This is in fact a complete package,
which is ready for sending. When an eCell receives such a
gene package it will only store the 8-bit gene part; the rest
is used for the package transfer. Depending on the number
of connections each line in the eDNA program (except
else, endif and endwhile) in the program takes up
4 of these genes times the number of connections to other
cells, so that would be 32 bits pr. connection pr. cell.
Typically a cell has no more than 2 or 3 connections. The
eDNA is consequently very compact but of course scales
linearly with application size.

The four 8-bit gene codes used to describe one line of
eDNA program code is called a gene-set. The first 8-bit
gene code is a program counter, which tells eDNA where to
read the next gene-set from. The second 8-bit gene code is a
relative address to the eCell that this gene needs to target.
The third 8-bit gene code is the identifier, which the eCell
will put on the package for the eCell described in the
second gene and finally, the fourth 8-bit gene code is an
ALU opcode telling the eCell which ALU operation to
perform. If the eCell needs to forward the result of the ALU
operation to more than one eCell, the ALU opcode of the
next geneset will contain the code “00”. This tells the eCell
to not execute the operation, but simply take the result from
the result register.

Figure 11 eDNA gene package

6. EDNA PERFORMANCE ANALYSIS
In this section we want to investigate the performance of
eDNA regarding:

1. FPGA area usage

2. Execution time without faults

3. Execution time in case of faults

4. Self-healing time

5. Data maintenance

Comparison with FPGA implementation

The FPGA implementation which we compare eDNA
against is a LabVIEW FPGA implementation of the same
functionality in the smartest way.

This means that the ramp is implemented as a LUT
containing the scaled ramp values (because the LUT can
only take integer values), which are then rescaled upon
reading.

The averaging is implemented as a For-loop, which adds 32
numbers and which are finally right shifted by 5.

The VIs are seen in Figure 12.

Figure 12 (a) FPGA ramp, (b) FPGA avg

FPGA area usage

Table 1 shows the FPGA area usage for the two
applications.

Metric FPGA
ramp

eDNA
ramp

FPGA
avg

eDNA
avg

slices 5340 31773 3801 21483
FFs 3765 17950 2774 11310
LUTs 4659 28926 3290 18902

Table 1 FPGA area usage

For both applications eDNA uses approximately 6x more
slices, 4.5x more flip-flops, and 5.5x more LUTs. This a
little better than expected since the array used to implement
the application is a 3x3, meaning that we have 9 eCells
which all contains an ALU with a 32-bit adder and a 32-bit
shifter, consequently, 8 more adders and 8 more shifters
than the FPGA implementation uses.

The reason why the area of eDNA varies from application
to application is because in LabVIEW more non-reentrant
eDNA subVIs had to be added to take care of the streaming
of the data read from the detector.

 8

Execution time without faults

The results presented in this section are the execution time
of running the ramp and averaging application without any
analog I/O. The execution time for the ramp is the time it
takes to calculate one ramp value. The execution time for
the averaging is the time it takes to calculate the average of
32 integers.

FPGA
RAMP

EDNA
RAMP

FPGA
AVG

EDNA
AVG

41US 242US 2.42US 219US

Table 2 Execution time without faults

The FPGA ramp was implemented as a lookup table
holding scaled integer values representing the voltages for
the ramp. This means that we have to divide the output of
the lookup table with the scaling factor. For the ramp,
eDNA is 6x slower.

The FPGA averaging was implemented using an adder,
which accumulated the 32 readings of the detector and
finally, shifted the result 5 bits to the right. This is a very
fast operation and consequently, eDNA is 90x slower. The
main contributor to this time is the fact that eDNA uses 20
clock cycles pr. package transfer. The FPGA
implementation can be done in 97 clock cycles. So it is
clear that, since the eDNA averaging consists of 5 eCells,
we will use a lot of time sending packages back and forth.

The reason why this difference is less pronounced for the
ramp is due to two reasons:

1. The FPGA implementation is a memory operation
and consequently is slow.

2. The eDNA program is only run once pr. ramp as
opposed to 32 times for the averaging. This means
that the data transfer penalty is not as visible.

Execution time in case of faults

Now we want to study the execution time in case we have
faults as well as the effect of the fault.

The first fault scenario we will look at is depicted in Figure
13. Figure 14 shows the execution time for the eDNA
averaging in case of an injected fault at sample nr. 1000 at
the eCell shown in Figure 13. Note that the execution time
displayed on the y-axis includes analog input reading plus
additional logic to control the fault injection. These results
should be normalized using the results from Table 2.

Figure 13 Fault scenario 1

Figure 14 Execution time of eDNA averaging in case of a
fault at sample nr. 1000

When the fault occurs, we see that the self-healing time is
approx. 116 us higher than regularly. The exact same time
is seen for the eDNA ramp application. This doesn’t
depend on the application but on the number of eCells,
since the time reflects what is used to reconfigure. We also
see that after the fault is repaired eDNA uses roughly 1 us
more pr. sample. The reason for this is that eCell 5 which
was faulty is now moved further away from the other eCells
as seen in Figure 13.

Instead of replacing eCell 5 with eCell 7 we will now
replace eCell 5 with eCell 9, which is even further away.
This yields the execution time curve seen in Figure 15.
After the fault the execution time is now 15us worse – just
because of a slight change in chosen spare eCell. This
stresses the fact that our NoC is very expensive – since all
that is changed from Figure 14 to Figure 15 is the
placement of one eCell.

 9

Figure 15 Execution time when picking a slightly worse
eCell

As described in section 3, we have not yet implemented the
fault detection algorithm. This means that we at the present
prototype are incapable of always reconstructing the right
data. We rely on eDNAs ability to reconstruct constants.
Figure 16 shows the data output for fault scenario 1 except
that the fault is introduced at 450 us. The amplitude point
going to -6.5 is due to the fact that eDNA is unable to
recover the right value of the sum when the fault occurs
(Figure 10 – eCell 5 is doing: avg = sum >> 5). But as
soon as the next data point is read the sum will be reset and
eDNA will be calculating correctly again. Fortunately,
eDNA notifies the user of the fault occurrence, by
outputting a package with a special header, explaining
where the fault occurred and where the new eCell was
placed. In this way a filter could be applied, which filter
this data from the original data set. This is stressed when
we look at what happens for faults in the eDNA ramp.
Figure 17 shows the ramp output of eDNA when a fault is
introduced in an eCell at ramp nr. 450. The result is that
the voltage applied drops to 0. Figure 18 shows the impact
on the interferogram. Clearly, with the current state of the
prototype it would be necessary to filter points which eDNA
mark as faulty from the original data set.

Figure 16 Impact on data when eCell 5 is faulty at
sample nr. 450

Figure 17 Fault in eDNA ramp at ramp nr. 450

Figure 18 Impact on interferogram of fault in eDNA
ramp

Result discussion

It should be noted that the comparison done in this paper is
not a completely fair comparison to eDNA, because eDNA
is targeted to become a new type of FPGA platform.

 10

Consequently, eDNA is implemented as an FPGA platform
on top of another FPGA platform. This would give us a
unfair penalty especially for the routing, which already is a
bottleneck for eDNA. However, the eDNA prototype is
currently implemented on an FPGA and not an ASIC, so
the results from that study is future work.

7. CONCLUSION
This work describes the first implementation of the eDNA
architecture in a real world application – a Fourier
Transform Spectrometer (FTS). The integration of the
eDNA prototype into the CompactRIO embedded system
was fast and unproblematic. We implemented the control
and dataprocessing of the FTS on eDNA and learned that
autonomous self-healing comes at a high cost. However, we
have good reason to believe that we can decrease this cost a
lot for several reasons: (1) We have a huge (20 clock cycles
pr. package transfer) communication overhead in our
Network-on-Chip infrastructure. We hope to improve this
by making wider links, consequently eliminating our
current sequential bit-by-bit package transfer, (2) The
prototype is aimed at an ASIC implementation to be a new
type of FPGA. Consequently, the current prototype is an
FPGA architecture on top of another FPGA architecture
which is bound to give a performance penalty especially for
routing which is already a punishing eDNA. (3) The
PicoBlaze microprocessor is only 8-bit, consequently
wasting 3 clock cycles pr. operation. We would like to
replace this with a dedicated ASIP.

Another important step for eDNA is the implementation of
the fault-detection algorithm in order to make eDNA truly
autonomous. Furthermore, the work in this paper shows
that the self-healing time is a fraction of the execution time
of an application.

ACKNOWLEDGEMENT
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology during Michael Reibel Boesen’s 5-month visit
to the Jet Propulsion Laboratory as a part of his PhD-
education at the Technical University of Denmark –
Informatics department under a contract with the National
Aeronautics and Space Administration. The visit was made
possible with financial support from the Technical
University of Denmark, Oticon Fonden and Otto Mønsteds
Fond.

REFERENCES
[1] Boesen, M.R., Madsen, J.: eDNA: A bio-inspired

reconfigurable hardware cell architecture supporting
self-organisation and self-healing. Proceedings of the
2009 NASA/ESA Conference on Adaptive Hardware
Systems (2009) 147–154.

[2] M. R. Boesen, P. Schleuniger, and J. Madsen.
Feasibility study of a self-healing hardware platform.
Proceedings of the 2010 Conference on Applied
Reconfigurable Computing, 2010.

[3] Mange, D., Sipper, M., Stauffer, A., Tempesti, G.:
Toward robust integrated circuits: The embryonics
approach. Proceedings of the IEEE 88(4) (2000) 516–
543

[4] Stauffer, A., Rossier, J.: Self-testable and self-repairable
bio-inspired configurable circuits. 2009 NASA/ESA
Conference on Adaptive Hardware Systems (2009) 155–
162

[5] Plaks, T., Zhang, X., Dragffy, G., Pipe, A., Gunton, N.,
Zhu, Q.: A reconfigurable self-healing embryonic cell
architecture. International Conference on Engineering
of Reconfigurable Systems and Algorithms - ERSA’03
(2003) 134–40

[6] Samie, M., Dragffy, G., Popescu, A., Pipe, T.,
Melhuish, C.: Prokaryotic bio-inspired model for
embryonics. 2009 NASA/ESA Conference on Adaptive
Hard- ware Systems (2009) 163–170

 [7] Abramovici, M., Strond, C., Hamilton, C., Wijesuriya,
S., Verma, V.: Using roving STARs for on-line testing
and diagnosis of FPGAs in fault-tolerant applications.
Proceedings of IEEE Computer Society International
Test Conference (ICSM'99), 973-982, 1999

[8] Xilinx: Microblaze processor reference guide - edk
10.1i. Xilinx User Guide UG081 (v9.0) (2008)

[9] Chapman, K.: Picoblaze 8-bit embedded
microcontroller for spartan-3, virtex-ii, and virtex-ii pro
fpgas. Xilinx User Guide UG129 (v1.1.2) (2008)

[10] Chao, T., Lu, T., Davis, S.R., Rommel, S.D., Farca,
G., Luey, B., Martin, A., Anderson, M.H.: Compact
Liquid Crystal Waveguide Based Fourier Transform
Spectrometer for In-Situ and Remote Gas and Chemical
Sensing. Proceedings of SPIE – International Society
for Optical Engineering, 2009.

[11] Chao, T.: Electro-Optic Imaging Fourier Transform
Spectrometer. Proceedings of IEEE Aerospace
Conference, 2007.

 11

[12] National Instruments: NI CompactRIO –
Reconfigurable Control and Acquisition System,
http://zone.ni.com/devzone/cda/tut/p/id/2856. Accessed
October 10, 2010.

[13] National Instruments: Importing External IP into
LabVIEW FPGA,
http://zone.ni.com/devzone/cda/tut/p/id/7444. Accessed
October 10, 2010.

[14] Boesen, M.R., Madsen, J. and Keymeulen, Didier:
Autonomous Distributed Self-organizing and Self-
healing Distributed Hardware Architecture – the eDNA
Concept. Submitted to IEEE Aerospace Conference,
2011

BIOGRAPHY
Michael Reibel Boesen is a PhD-
student from the Technical University
of Denmark (DTU). He earned his
Master of Science in Engineering from
DTU in 2008 and expects to get his
PhD degree in the summer of 2011. He
is the co-inventor on the patent-
application for the eDNA architecture.

His research interests include adaptive and autonomous
embedded systems. Michael is the vice-chair of the IEEE
Student Branch DTU

Didier Keymeulen received the BSEE,
MSEE and Ph.D. in Electrical
Engineering and Computer Science
from the Free University of Brussels,
Belgium in 1994. In 1996 he joined the
computer science division of the
Japanese National Electrotechnical
Laboratory as senior researcher.

Currently he is principal member of the technical staff of
JPL in the Bio-Inspired Technologies Group. At JPL, he is
responsible for DoD and NASA applications on evolvable
hardware for adaptive computing that leads to the
development of fault-tolerant electronics and autonomous
and adaptive sensor technology. He participated also as
test electronics lead, to Tunable Laser Spectrometer
instrument on Mars Science Laboratory. He served as the
chair, co-chair, and program-chair of the NASA/ESA
Conference on Adaptive Hardware. Didier is a member of
the IEEE.

Jan Madsen Jan Madsen is
Professor in computer-based
systems at DTU Informatics at the
Technical University of Denmark.
He is Deputy Head of DTU
Informatics and Head of the Section

on Embedded Systems Engineering. He is the leader of the
Hardware Platforms and Multiprocessor System-on-Chip
Cluster within the European Union Network of Excellence
on Embedded Systems, ArtistDesign. Jan Madsen is the
lead delegate for Denmark in the Governing Board of the
ARTEMIS Joint Undertaking, a new pan-European
research initiative for public-private partnership in
Embedded Systems. He has been Program Chair for DATE
(International conference on Design, Automation and Test
in Europe) and Program and General Chair for CODES
(International conference on Hardware/Software
Codesign). Jan is the other co-inventor on the patent-
application for the eDNA architecture.

Thomas Lu is a Senior Researcher at NASA Jet Propulsion
Laboratory, California Institute of Technology, Pasadena,
CA, USA. Prior to joining JPL, he was a Senior Scientist
and Chief Technology Officer in several small high-tech
companies for the development of high-speed 3D imaging
systems and parallel optical processors. He led the design
and implementation of several generations of 3D imaging
products and multi-stage automatic target recognition
systems. He has co-authored two book chapters, over 50
professional papers, 6 U.S. patents and several
international patents. Dr. Lu’s research interest includes
3D imaging, modeling, computer vision, digital/optical
image processing, pattern recognition, neural networks and

hyperspectral imaging.

Tien-Hsin Chao is a Principal
MTS and group lead of the
advanced optical processing group
at NASA Jet Propulsion
Laboratory, California Institute of
Technology, Pasadena, California.

Dr. Chao is leading a team at JPL to develop optical
processing and neural network based pattern recognition
system, suitable for both digital and ultra high-speed
optical hardware implementation. He is also developing
electro-optic imaging spectrometer technologies for NASA
space exploration and defense surveillance applications.
He has published more than 100 technical papers, 14 U.S.
patents and co-authored 3 book chapters. Dr. Chao is a
fellow of SPIE. He has co-chaired the Annual Optical
Pattern Recognition Conference of the SPIE Defense and
Security Symposium since 1990.

 12

